Leo Ku 古巨基 - 愛得太遲 Song Information
Singer
Song Name
Language
Original Reference MV
Sheet Information
SheetID
Performance mode
Notation
No. of Pages
2 Pages
Starting Key
Publish Date
2022-04-14
Price
USD4.99
Discount
Buy 4 Get 1
Buy 7 Get 3
Buy 7 Get 3
Users Comment
好聽歌,永遠不會厭
2025 剛剛聽《你總要學會往前走》
我媽媽走了,每當聽這歌。
眼淚都自然的流,活在當下。愛身邊的人
聽懂這首歌的人都有自己的故事。而我,這首歌教會我珍惜身邊人 不要什麼都推脫以為自己還有下一次去完成自己想要完成的事情 時間拖著拖著等你想約的人想做的事要做的時候 生命已經沒等你沒機會了
(先說句抱歉,我身為香港人但中文很差😅)
小時候去唱k時我爸媽最喜歡唱的就是這首歌,當時年齡太小加上已經過了太久導致我沒能記得歌名歌手。
我爸媽在不久前離婚了,我跟媽媽離開了那個家。因為實在很想再次聽到這首歌,我根據我所記得的旋律(加上不記得歌詞了)找了很久,直到現在我快要上大學了才找到這兒,不知為何突然有種「原來是這首歌啊。」的感覺。
怎麼說呢,我爸媽是為了利益才結婚的,他們也是離婚後的現在才知道原來在結婚後的那幾年裡自己已經愛上對方了,我也一直在找機會湊合他們,我希望他們可以永遠一起走下去。可是有一天我媽跟我說:「你不用為了我們操心了,事情已經發生,無法改變,隻能說是愛得太遲了。」
我真的想不到他們的經歷會和這首歌的歌名一樣⋯
2024還在聽的,出個聲音吧
薑濤啲歌都好好聽,好有味道
三十年過去了,真是一段漫長歲月,但每次聽到歌曲旋律晌起,總有撼動人心的力量。
大把人愛得太遲, 甚至永不能愛
2nd order ODE solutions (原曲:愛得太遲)
When you find general solution of second order ODE, c1 c2
Has all solutions, Wronskian's not zero, fundamental set
Just consider it like a quadratic
Just solve b square minus 4 a c
Positive, 2 distinct, c1 e to r1t plus c2 e to r 2t
Negative will have 2 complex, it's form is lambda plus or minus i mu
e lambda t cosine and sine mu times t are real solutions, add Cs and then sum
Zero has a repeated root, it equals to minus b over 2 a
Use reduction order, just differentiate twice, sub a b c, let zero, then you get second solution
For a non homogeneous one, you need to find general solution first
Then you find the form of that particular from right hand side
From highest order of polynomial, or just A e kt for exponential
Both cosine and sine should be there in your Y when one's on the right side
Differentiate twice, and sub to it
Then you get linear Equations and solve them
After you solve them, sub them to your Y
Then Y plus homogeneous is true general
For one product, both kinds should be here
Like e and trig, e sine and cosine should be here
And when you see a sum, solve each one by one, then add up you can solve it
But remember, it's trial and error
When you get something equals to zero, don't give up
Just find another form, like swapping sine and cosine, and you do it again
And also when you know y 1 (x), for general, use reduction of order
Sub the conditions and use v times y 1 equals to y 2 and differentiate twice
Then find v (x) with integration, just know that you may have to do this twice too
Then you ignore each k, and simplify that part with C, then you will get y 2 and the general solution
我很愛這首歌,從2007開始
夕爺填的詞,首首都入心入肺😢